<u>13th</u> International Conference on Probabilistic Safety Assessment and Management [PSAM13]

# The Risk of Nuclear Power

Soon Heung Chang Handong Global University Oct 4, 2016



# Introduction: Risk of Nuclear Power



Lessons of PSA from Accidents



4

Nuclear Safety Enhancement through PSA

**Closing Remarks** 

# Introduction: Risk of Nuclear Power

# Various Energy Chains for Human Beings

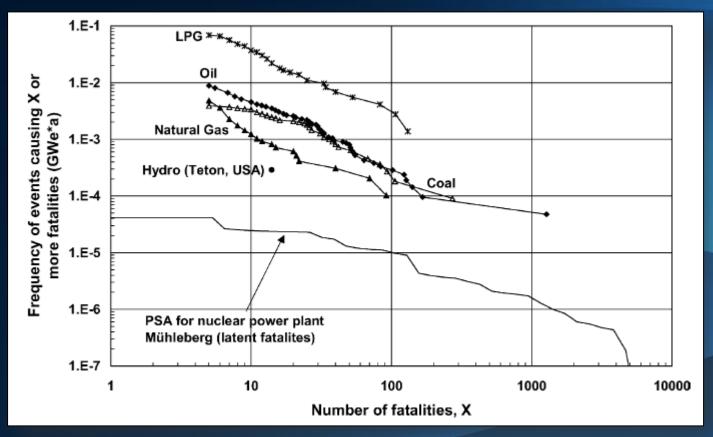
#### Sharply increasing world-wide energy demand

56% Increasing energy demand between 2010 and 2040 [EIA, 2013]

#### Accidents and Fatalities from Electrical Energy Sources

Summary of severe accidents that occurred in energy chains (1969 – 2000)

|              |           | OECD       |                           | Non-OECD             |        |                           |  |
|--------------|-----------|------------|---------------------------|----------------------|--------|---------------------------|--|
| Energy chain | Accidents | Fatalities | Fatalities<br>/ GWe ·year | Accidents Fatalities |        | Fatalities<br>/ GWe ∙year |  |
| Coal         | 75        | 2,259      | 0.157                     | 1,044                | 18,017 | 0.597                     |  |
| Oil          | 165       | 3,713      | 0.132                     | 232                  | 16,505 | 0.897                     |  |
| Natural Gas  | 90        | I,043      | 0.085                     | 45                   | ١,000  | 0.111                     |  |
| LPG          | 59        | I,905      | l.957                     | 46                   | 2,016  | I 4.896                   |  |
| Hydro.       | I         | 14         | 0.003                     | 10                   | 29,924 | 10.285                    |  |
| Nuclear      | 0         | 0          | -                         | I                    | 31*    | 0.048                     |  |
| Total        | 390       | 8,934      | -                         | I,480                | 72,324 | -                         |  |


\*These are immediate fatalities.

Ref. "EIA, International Energy Outlook 2013, 2013" & "OECD/NEA, Comparing Nuclear Accident Risks with Those from Other Energy Sources, 2010".

# Various Energy Chains for Human Beings

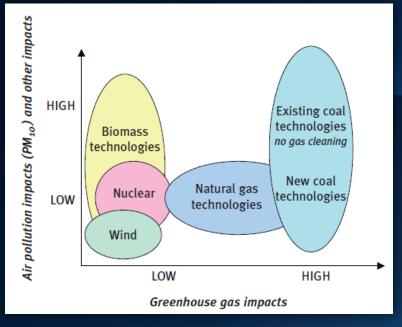
#### Fatality Risks of Electrical Energy Sources

- Low frequency of severe nuclear accident causing fatalities
- Frequency-consequence curves for severe accidents in OECD countries



Ref.: S. Hirschberg et al., Severe accidents in the energy sector: comparative perspective, 2004.

# Various Energy Chains for Human Beings


#### Environmental Impacts of Electrical Energy Sources

Nuclear, and Wind power :

Low air pollution & Low greenhouse gas emission

Nuclear, Wind, and Hydro power :

Low external costs of electricity production



Quantified marginal external costs of electricity production in Germany<sup>2</sup> (in  $\notin$  cent per kWh)

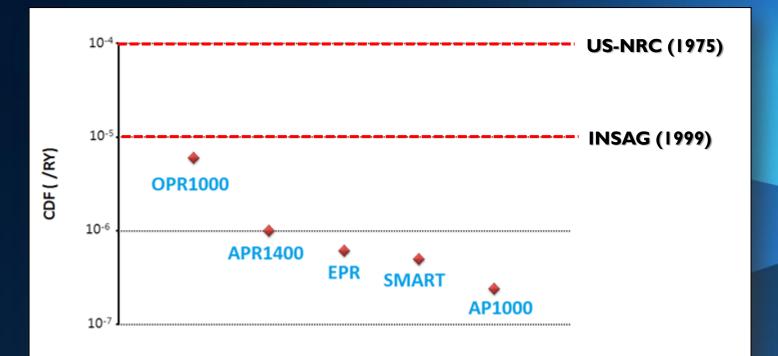
|                 | Coal  | Lignite | Gas   | Nuclear | PV    | Wind   | Hydro  |
|-----------------|-------|---------|-------|---------|-------|--------|--------|
| Damage costs    |       |         |       |         |       |        |        |
| Noise           | 0     | 0       | 0     | 0       | 0     | 0.005  | 0      |
| Health          | 0.73  | 0.99    | 0.34  | 0.17    | 0.45  | 0.072  | 0.051  |
| Material        | 0.015 | 0.020   | 0.007 | 0.002   | 0.012 | 0.002  | 0.001  |
| Crops           | 0     | 0       | 0     | 0.0008  | 0     | 0.0007 | 0.0002 |
| Total           | 0.75  | 1.01    | 0.35  | 0.17    | 0.46  | 0.08   | 0.05   |
| Avoidance costs |       |         |       |         |       |        |        |
| Ecosystems      | 0.20  | 0.78    | 0.04  | 0.05    | 0.04  | 0.04   | 0.03   |
| Global Warming  | 1.60  | 2.00    | 0.73  | 0.03    | 0.33  | 0.04   | 0.03   |

Ref.: "IPCC, IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, 2011." &

"EUROPEAN COMMISION, External Costs: Research results on socio-environmental damages due to electricity and transport, 2003."

# **PSA in World History of Nuclear Safety**

- \* "Atoms for Peace" from D. Eisenhower (1954)
- Establishment of the IAEA (1957)
- The first PSA report for a NPP, WASH-1400 (1975)
  - Probabilistic Safety Analysis (PSA)
    - Quantitative risk analysis of nuclear power plants
    - Defining the type of consequences from accidents
  - Calculating frequency for each consequence by PSA
    - Core damage
    - Radioactive-nuclides release (containment failure)
    - Dose to public
      - Early Fatality Risk
      - Cancer Fatality Risk
  - Methodology
    - Accident scenario : event tree
    - Branch of accident scenario : fault tree


# Probabilistic Safety Analysis (PSA)

- The Key Safety Criteria: "Core damage frequency (CDF)" and "Large early release frequency (LERF)"
  - US-NRC (1975)
    - CDF: 10<sup>-4</sup>/RY
  - EPRI for future LWRs (1990)
    - CDF: 10<sup>-5</sup>/RY
  - INSAG Criteria (1999) (considered as international best practices)
    - CDF: 10<sup>-4</sup>/RY for existing reactors 10<sup>-5</sup>/RY for future reactors
    - LERF: 10<sup>-6</sup>/RY
  - For Gen-IV reactors
    - Considered as I/10 of Gen-III reactors = 10<sup>-6</sup>/RY

### **Probabilistic Safety of NPPs**

Core Damage Frequency (CDF) of Reactors and Safety Criteria

- All the operating NPPs meet the US-NRC criteria.
  - ⇒ Gen-III reactors (OPR1000, APR1400, EPR, APWR, ABWR etc.): Lower than INSAG`s criteria
- The decrease of CDF means the enhancement of safety.



### **Probabilistic Safety of NPPs**

Safety Criteria for Early and Cancer Fatality Risk of Reactors

- US-NRC Criteria
  - $\Rightarrow$  Early Fatality Risk: 5.0 x 10<sup>-7</sup> / RY
  - Cancer Fatality Risk: 2.0 x 10<sup>-6</sup> / RY
- Example: Shin-Kori NPPs
  - ⇒ Early Fatality Risk: ~ 2.0 x 10<sup>-8</sup> / RY
  - $\Rightarrow$  Cancer Fatality Risk: ~ 4.0 x 10<sup>-9</sup> / RY

# Risk Assessment and Management: (1) US

After recognizing the importance of PSA from WASH-1400 report (1979),

- "Policy statement on severe reactor accidents" (1985)
- "Safety goals for the operations of NPPs; Policy; Statement; Republication" (1986)
- Having risk information of each NPP

Use of PRA Methods in Nuclear Regulatory Activities (1995)

PRA Implementation Plan (1996-2001)

Risk-Informed Regulation Implementation Plan (2000)

Implementing "Reactor Oversight Process (ROP)" (2006)

Risk-informed and Performance based Regulation (RIPBR) (2007)

- After the Fukushima accidents,
  - Developing the Defense-In Depth (DID) with Risk-informed application and performance

Risk-informed Performance based DID

# **Risk Assessment and Management: (2) Europe**

#### France

 Using PSA for supporting the deterministic safety assessment in regulatory process

#### Swiss

Requiring PSA Level 1 and 2 for licensing under Nuclear Law (2005)

### Belgium

- Operating NPPs: PSA in periodic safety review (PSR)
- New NPPs: PSA for licensing
- Using PSA for 10-year lifetime extension of Tihange-1 NPP

#### Sweden

- Requiring PSA Level 1 and 2 for licensing under Nuclear Law (2004)
- Updating the PSA for "Living PSA" every year

## Risk Assessment and Management: (3) Japan

\* "Basic Policy of Nuclear Safety Regulation using Risk Information" (2003)

- Adopting the risk information of PSA for safety regulation
- Establishing a plan for risk-informed regulation by JNES (2005)
- Advising performance indices for LWRs (2008)
- Proclaiming "Preservation Program" (2008)
  - New inspection program for NPPs using risk information
- PSA for offsite events (before Fukushima accidents)
  - Mostly for earthquake, not flooding
- Establishing "Standard PSA" (after Fukushima accidents)
  - PSA for various offsite events including tsunami
  - PSA Level 3
  - Using accident sequences in regulation

Establishing and carrying out the phased strategies for PSA

### Risk Assessment and Management: (4) Korea

- Implementation of PSA Based on
  - **1** Post-TMI-2 implementation requirements (1979)
    - First assessment for Kori-3,4
  - ② Policy on severe accidents (2001)
    - Level I and 2 Assessment for all Korean NPPs (~2007)
  - **③** Post-Fukushima Implementation (2011)
    - Revisions of PSA models
    - Low-power and shutdown PSA

### Using PSA for licensing NPPs

- Improving design concept in APR+
- Design certificate for APRI400 and SMART

#### Risk-informed application used for

- Risk-informed integrated leak rate test (RI-ILRT)
- Risk-informed in-service inspection (RI-ISI)
- Risk-informed allowable outage time (RI-AOT)
- Surveillance test interval (STI)

### **Risk Assessment and Management: (4) Korea**

- Korea`s Legislation on Severe Accident in Nuclear Safety Act
  - Revision of Nuclear Safety Act including Severe Accident Enforcement
  - Notification No. 9 (Assessment of Accident Risk)
    - Appropriate technical suitability, details and analysis ranges of PSA
    - Quantitative Risk Goal
      - ① Risk of early fatality and cancer fatality from NPPs to residents : Less than 0.1 % of total risk
      - Occurrence probability of Cs-137 release larger than 100 TBq: Less than 1.0 x 10<sup>-6</sup> / RY



# **Contribution of PSA on Nuclear Safety**

- Has PSA been effective and helpful for nuclear safety until now?
  - Applications of PSA on design, operation, and accident management
    - Plant vulnerabilities
    - Intersystem dependencies
    - Optimization of systems
    - Maintenance program
    - Improvement of emergency operating procedures
    - Improvement of guidelines for severe accident management
    - Supporting emergency planning
  - In accidents, it was proven that PSA was important
    - Based on PSA
      - Before accidents: "Indicating problems"
      - After accidents: "Reflecting lessons"

### TMI accident (1979)

- Before the accident
  - WASH-1400 (1975)
    - Emphasizing the importance of SBLOCA, more than LBLOCA's
- In the accident
  - SBLOCA occurred in reality (pressurizer relief valve stuck open)
  - Human errors (confusion over valve status)
- After the accident
  - No injuries, and No measurable health effects
  - Rising importance on:
    - Human factors
    - Defense-in-Depth (DID)

- Chernobyl accident (1986)
  - Before the accident
    - Importance on Defense-in-Depth
  - In the accident
    - Operator errors
    - Deficiencies on operating instructions
    - Deficiencies on design
  - After the accident
    - Rising importance on:
      - Containment
      - Safety culture
      - International cooperation

- After the Fukushima accidents (2011)
  - Before the accident
    - Possibility of tsunami-waves
  - In the accident
    - Earthquake and Tsunami
    - Poor communication and delays
  - After the accident
    - Rising importance on:
      - External events (earthquake, tsunami, fire etc.)
      - Electrical power sources
      - Accident management strategy
      - Control tower

- Reflecting Lessons of the Fukushima accidents in nuclear safety well:
  - U.S.
    - Emergency response improvements for BDBA
      - FLEX (Diverse and Flexible coping capability)
  - France
    - ASN requiring improvements with complementary safety assessments
      - HSC (Hardened Safety Core)
      - Nuclear rapid response force (FARN)
  - Japan
    - New regulatory requirements by NRA
      - For DBA, severe accident, and external events (earthquake and tsunami)
  - Korea
    - 56 post-Fukushima action items
    - Stress tests for all the NPPs
    - Legislation on Severe Accident in Nuclear Safety Act

- Ways of PSA for Future
  - I) Uncertainty of Basic Data and CCF
  - 2) More Various BDBA Sequences
  - 3) PSA for External Initiating Events
  - 4) **PSA** for Multi-unit
  - 5) PSA for Spent Fuel Pool Storage
  - 6) Application of PSA on Accident Management
  - 7) Living PSA Connecting to Online Inspection and Maintenance

I) Uncertainty of Basic Data and CCF

- Need of updating basic data for instruments and systems
  - Pumps, valves, sensors, tanks etc.
- Need of modeling for Human Reliability Analysis (HRA)
  - Human, team, organization
  - Man-machine interfaces
- Importance of Common Cause Failure (CCF)
  - More application of redundancy and diversity after the Fukushima accident
  - Critical factor for causing the failure of a certain function

- 2) More Various BDBA Sequences
  - Defining the imaginable initiating events
    - Able to cause containment-bypass
  - Analyzing the various accident sequences
    - Based on the results of deterministic safety analysis

- 3) PSA for External Initiating Events
  - Updating the frequencies of external initiating events
    - Earthquake, flooding, fire etc.
    - Finding new imaginable events
  - Sequence analysis under the specified conditions
    - Harsher conditions than internal initiating events`

- 4) **PSA** for Multi-unit
  - Need of overall analysis on all the onsite plants
  - Availability of shared resources for multi-unit in a site
    - Severe accident emergency response team
    - One movable 3.2MW diesel generator (as one in N+I strategy)
  - Application on accident management strategy
    - EDMG (Extensive Damage Mitigation Guideline)

- 5) PSA for Spent Fuel Pool Storage
  - Reflecting lessons of Fukushima unit 4
  - Supplement for safety enhancement
    - Analyzing the fragility
  - Evaluation of spent fuel pool storage with a plant
    - Availability of resources

6) Application of PSA on Accident Management

- Accident management guidelines
  - Severe accident management guideline (SAMG)
  - Extensive damage mitigation guideline (EDMG)
- Prevention of the radioactive material release
  - Containment failure
  - Containment-bypass
    - SGTR, ISLOCA
- Evaluation of each mitigation step
  - External reactor vessel cooling (ERVC)
  - Containment filtered venting system (CFVS)

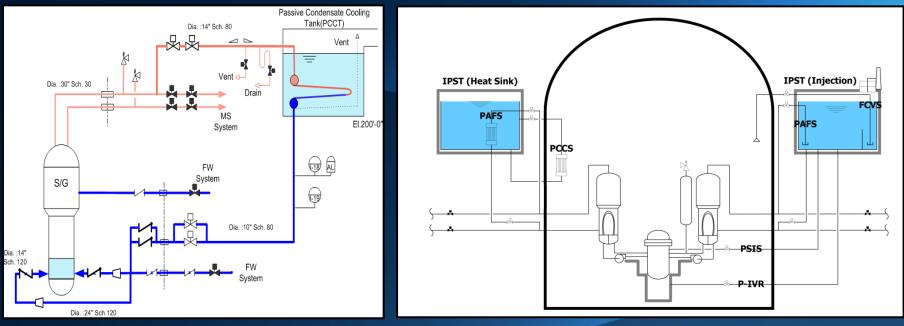
- 7) Living PSA Connecting to Online Inspection and Maintenance
  - Reflecting the current design and operational features
    - Feedback from internal and external operational experiences
  - Utilizing information of online inspection
  - Integrating plant activity with the cooperation
    - Identifying the fragility for maintenance



# Nuclear Safety after the Fukushima Accident

- The basic cause of the Fukushima accident : 'Decay Heat Removal Failure' from 'Station Black-Out'
  - All the NPPs automatically shut down by detecting earthquake.
  - **<u>'Decay heat'</u>** continuously generated after the shutdown due to the fission products decay
  - Loss of offsite power due to Earthquake & Loss of emergency power due to Tsunami
    - ⇒ Occurrence of Station Black-Out (SBO)
    - Failure of Decay Heat Removal
    - $\Rightarrow$  Failure of Containment




### How to Enhance Nuclear Safety

- Solutions for Safety Enhancements
  - I.Applying "Passive decay heat removal systems"
  - 2. Diversifying and Hardening "Additional safety systems"
  - 3. Protecting "Integrity of containment" by ECSBS and CFVS
  - 4. Applying "Online inspection and maintenance"
  - 5. Improving "Safety culture"

# I. Applying "Passive Decay Heat Removal Systems"

### Passive Safety Systems

- Operated by natural phenomena (not depending on electrical power sources)
- Minimizing operator actions
- Long-term cooling (with easy water refilling from outside)
- Cheaper costs for installations than active safety system's



< Passive Auxiliary Feedwater System (PAFS) >

< Integrated Passive Safety System (IPSS) >

# 2. Diversifying and Hardening "Additional Safety Systems"

### Diversifying safety systems : Minimizing CCF

- Electrical power sources
- Alternative AC (AAC) power sources, and Movable electrical power sources
- DC battery

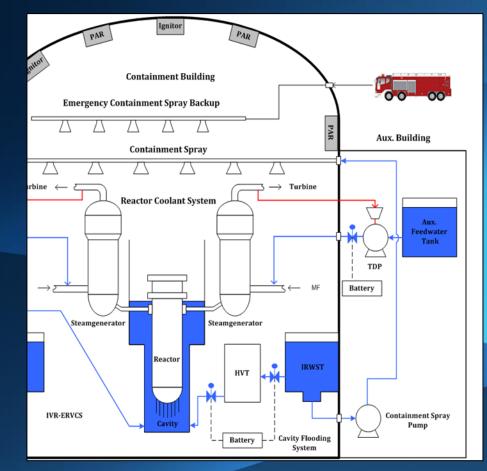
#### Emergency coolant supply systems

Alternative pumps and water sources

#### Emergency control rooms

With seismic design

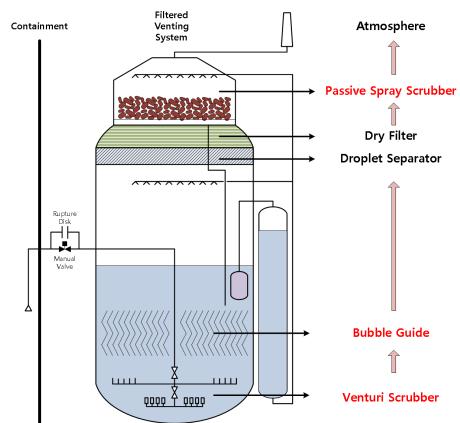
### Hardening integrity of diversified systems


- Facilities with protective shields
- Underground systems and components



#### < Hardened Safety Core (HSC) in France >

# 3-1. Protecting "Containment Integrity" by Cooling


- To prevent large release of radio-nuclides
- Containment spray system
  - Installed in conventional PWRs
  - The most effective for cooling
- Emergency containment spray backup system (ECSBS)
  - Injecting water by fire trucks through nozzles installed onsite
- Containment heat exchangers for future NPPs
  - Condensing steam in containment



< Containment Cooling System in APR1400 >

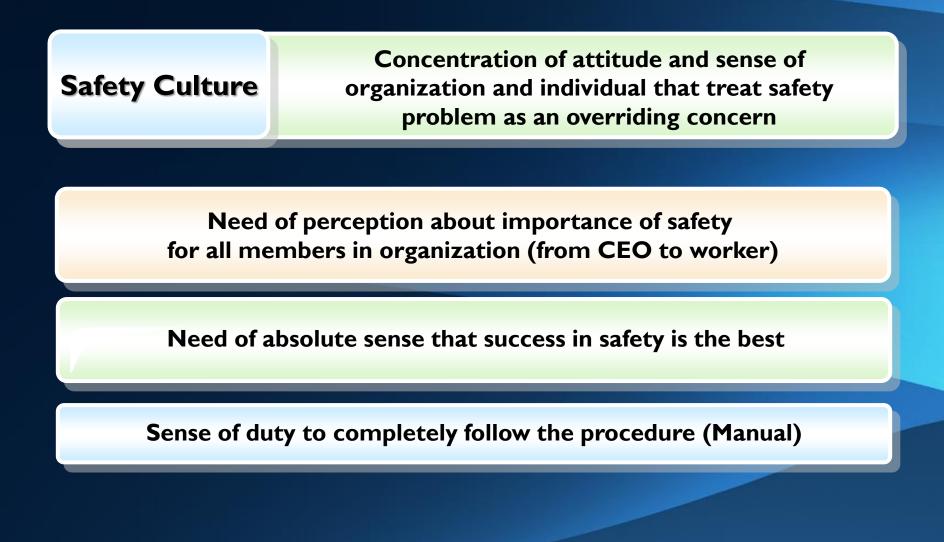
# 3-2. Protecting "Containment Integrity" by Filtered Venting

- Containment protection by controlled venting of steam and non-condensable gases
- Containment Filtered venting System (CFVS)
  - Passive depressurization by pressure difference
  - Radionuclide filtering
  - Decontamination performance
    - Aerosol: 99.99 %
    - lodine: 99.9 %



#### < Containment Filtered Venting System >

# 4. Applying "Online Inspection and Maintenance"


#### Online equipment monitoring systems

- Providing status information in real time
- Determining what types of maintenance is needed

#### Online inspection and maintenance

- Maintaining components based on inspection and diagnosis
- Requiring "adequate redundancy, reliability, and effectiveness" for online maintenance
- Also available to apply predictive online maintenance using advanced signal processing techniques

# 5. Improving "Safety culture"







# Closing Remarks –(1/3)

 Low early-fatality risk of nuclear power from accidents, and Low environmental impact

PSA has been useful,

and will be effective and necessary more than ever.

- TMI: Occurrence of SBLOCA (issued before) + Human error
- Chernobyl: Importance of containment
- Fukushima
  - External events (earthquake, tsunami, fire etc.)
  - Electrical power sources
  - Accident management strategy
- Increasingly utilizing "Risk-Informed Application and Regulation" in many countries
- Korea`s quantitative criterion
  - I00TBq of Cs-I37, less than I0<sup>-6</sup> / RY

### Closing Remarks –(2/3)

- I) Uncertainty of Basic Data and CCF for both Machines and Humans
- 2) More Various BDBA Sequences (causing Containment-Bypass etc.)
- **3) PSA** for External Initiating Events
- **4) PSA** for Multi-unit
- 5) PSA for Spent Fuel Pool Storage
- Application of PSA on Accident Management (SAMG & EDMG) for ERVC, CFVS etc.
- 7) Living PSA Connecting to Online Inspection and Maintenance

## Closing Remarks –(3/3)

Worldwide NPPs are safe within safety criteria for fatality risk.

- Needed to enhance the safety of NPPs continuously
- How to Enhance Nuclear Safety through PSA
  - I) Applying Passive Safety Systems
  - 2) Diversifying and Hardening Additional Safety Systems
  - 3) **Cooling and Filtered Venting** for Integrity of Containment
  - 4) Applying Online Inspection and Maintenance
  - 5) Establishing the Firm Safety Culture

# **Thank You**